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We present a shear-transformation-zone (STZ) theoretical analysis of molecular-dynamics simulations of a
rapidly sheared metallic glass. These simulations are especially revealing because, although they are limited to
high strain rates, they span temperatures ranging from well below to well above the glass transition. With one
important discrepancy, the simplified STZ theory used here reproduces the simulation data, including the way in
which those data can be made to collapse approximately onto simple curves by a scaling transformation. The STZ
analysis implies that the system’s behavior at high strain rates is controlled primarily by effective-temperature
thermodynamics, as opposed to system-specific details of the molecular interactions. The discrepancy between
theory and simulations occurs at the lower strain rates for temperatures near the glass transition. We argue
that this discrepancy can be resolved by the same multispecies generalization of STZ theory that has been
proposed recently for understanding frequency-dependent viscoelastic responses, Stokes-Einstein violations, and
stretched-exponential relaxation in equilibrated glassy materials.
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I. INTRODUCTION

A remarkable scaling property of viscosity as a function of
shear stress has been observed by Olsson and Teitel [1] in sim-
ulations of a strongly overdamped, athermal, two-dimensional
amorphous system near its jamming transition. More recently,
an approximately similar scaling behavior has been seen by
Guan, Chen, and Egami [2] (GCE) in molecular-dynamics
simulations of a rapidly sheared, three-dimensional metallic
glass that undergoes a thermodynamic glass transition. These
results suggest that there may be a useful, minimal descrip-
tion of the underlying physics for the seemingly complex
dynamics of flow in glass-forming fluids and that some
scaling properties of a zero-temperature jamming transition
may persist in rapidly deforming systems far from jamming
conditions.

The distinguishing feature of the GCE simulations is that
they cover an unusually wide range of system parameters.
They are carried out at kinetic temperatures ranging from 100
to 1100 K, i.e., from well below to well above an apparent
glass transition. Importantly, they are carried out at strain
rates from 108 to 1012 s−1, all well above values ordinarily
accessible in the laboratory. By driving their systems at
large strain rates, GCE achieve steady-state, nonequilibrium
shear flows at temperatures far below the glass transition.
Under stress, molecular rearrangements become faster and
the internal disorder increases, while the kinetic temperatures
remain low. GCE are not probing truly glassy behavior in this
way; however, they are discovering important features of glass
dynamics by looking from this point of view.

In this paper we explore the implications of the GCE
results by comparing them with the predictions of a shear-
transformation-zone (STZ) theory [3–5]. This comparison
is timely because Voigtmann [6] recently has published
an analysis of the same data using an extended version

of mode-coupling theory (MCT) [7–9]. These two theories
of amorphous plasticity would seem at first sight to have
nonoverlapping regions of validity.

MCT starts with a liquidlike description of a many-body
system. Its strength is that the coupling terms that emerge from
its approximate closure of the many-body equations of motion
can be evaluated in terms of observable structure factors,
thus basing the theory directly upon microscopic dynamics.
Its weakness, however, is that this closure approximation is
accurate only if the density fluctuations are distributed in a
Gaussian manner. Therefore, MCT is effectively a mean-field
theory in which motions are determined by averaging over
large numbers of weakly correlated events. Such an approx-
imation becomes qualitatively incorrect at low temperatures,
where the flow is governed by sporadic, thermally activated
events that are rare but intense [10]. Voigtmann’s results may
imply that MCT retains some phenomenological validity for
flowing states in the low-temperature regime; but they cannot
in principle have the same fundamental validity that MCT can
claim at higher temperatures.

In contrast, the STZ theory starts with a solidlike picture
in which thermally activated, localized flow defects play the
central role in controlling plastic deformation. It predicts that,
at low temperatures, the yielding transition as a function of
stress is an exchange of dynamic stability between jammed and
flowing states and it describes the mechanical behavior of the
system on both sides of that transition. When combined with
an equation of motion for the effective disorder temperature
of the configurational (i.e., structural) degrees of freedom, the
STZ theory successfully predicts shear-banding instabilities in
agreement with simulations [11,12] and, as will be seen here,
describes a transition to liquidlike behavior at large stresses. It
is in the latter regime, however, that the STZ theory encounters
a weakness complementary to that of MCT. The highest GCE
strain rates are comparable to inverse molecular relaxation
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times, where the system must become a true fluid and where the
flow defects are no longer dilute and dynamically independent
of each other. Nevertheless, like MCT at low temperatures, the
STZ theory seems to retain at least a phenomenological validity
up to quite high strain rates. Why does this happen? Is there a
region of overlapping validity of the MCT and STZ theories?
Is this theoretical agreement related to the approximate scaling
behavior observed by GCE?

Our tentative answer to these questions is that, to a first ap-
proximation, our results are sensitive to only a few features of
the molecular interactions. The observed behavior is governed
largely by general thermodynamic principles supplemented
by dimensional analysis. The relation between stress and
strain rate in the rapid-deformation limit is determined almost
entirely by the density of STZs, which is determined by
the effective disorder temperature. The details of specific
mechanisms, such as the thermal activation rate for internal
STZ transitions, are almost irrelevant in most, but not all, of
the regime of interest.

Interestingly, the agreement between the STZ theory and
the GCE simulations fails for the smaller strain rates at
temperatures near the glass transition, for reasons that we think
we understand. All of the analysis presented here is based on
a single-species STZ model, which we know to be incorrect
for weakly perturbed, well equilibrated, glass forming systems
at low temperatures. Under the latter conditions, a statistical
argument predicts that STZs with a wide range of internal
transition rates become thermodynamically stable and that
the STZs at the slow end of this range control the viscous
response [13]. This distribution of transition rates accounts
accurately for the very broad response peaks observed in oscil-
latory viscoelastic measurements and for related experimental
observations such as Stokes-Einstein violations and stretched-
exponential relaxation [14]. Indeed, the success of the STZ
theory in predicting these intrinsically glassy, near-equilibrium
phenomena gives us confidence in the present attempt to extend
the analysis to strongly driven situations; but it also tells us
where to expect difficulties.

We start, in Sec. II, by presenting the steady-state STZ
equations of motion in a more general and compact form
than the one that has appeared in previous works [3–5].
Then, in Sec. III, we summarize the primarily kinematic
arguments that lead to our equation of motion for the effective
temperature. In Sec. IV, we describe the ways in which we
use the simulation data to evaluate the theoretical parameters.
Section V is devoted to our interpretation of the GCE scaling
analysis. We conclude in Sec. VI with a discussion of open
questions.

II. SHEAR-TRANSFORMATION-ZONE DYNAMICS

The basic premise of the STZ theory is that, in a closely
packed, amorphous material, deformation is enabled by a fluc-
tuating population of rare, localized, two-state, flow defects,
i.e., STZs. Let n± denote the number densities of STZs oriented
parallel and antiparallel to a deviatoric shear stress s. These
densities satisfy a master equation of the form

τ0ṅ± = R(±s)n∓ − R(∓s)n± + �̃(s,χ )[n∞(χ ) − n±].

(2.1)

On the left-hand side, the factor τ0 is a microscopic time scale,
of the order of picoseconds for metallic glasses. On the right-
hand side, the first terms containing the factors R(±s) are
the rates of forward and backward STZ transitions (in units
of τ−1

0 ). In general, these rate factors are functions of both
the ordinary and effective temperatures. They determine the
plastic strain rate γ̇ pl, which we write in the dimensionless
form

q ≡ τ0γ̇
pl = ε0v0[R(+s)n− − R(−s)n+], (2.2)

where v0 is the average volume per molecule and ε0 is a
dimensionless constant of the order of unity.

The second terms on the right-hand side of Eq. (2.1) are the
rates of STZ creation and annihilation. These are fluctuation-
activated processes, expressed in the form of a detailed-balance
relation in which the steady-state STZ density is determined
by the effective temperature χ :

n∞(χ ) = 1

v0
e−1/χ . (2.3)

Here χ is written in units of the STZ formation energy
eZ , i.e., χ = kBTeff/eZ . To a first approximation, eZ is the
energy required to create the amorphous analog of a vacancy-
interstitial pair. Note that the effective temperature introduced
here is the one that is defined thermodynamically in [15].
We presume that it is the same as the effective temperature
determined by a fluctuation-dissipation relation, as described
in [16] and references cited therein, but we know of no rigorous
proof of that assertion.

The quantity, �̃(s,χ )/τ0 is an attempt frequency consisting
of additive thermal and mechanical parts:

�̃(s,χ ) = ρ + �(s,χ ). (2.4)

The term ρ = ρ(θ ), where θ = kBT /eZ , is best understood as
a dimensionless, thermal noise strength. It is a super-Arrhenius
factor whose strong temperature dependence governs the
equilibrium glass transition and for which one of the present
authors has proposed the outlines of a first-principles deriva-
tion [17,18]. We expect that ρ(θ ) is of the order of unity at
high temperatures and that it decreases rapidly toward zero
as θ falls through the glass temperature. In the absence of
external driving, ρ(θ ) controls the rate at which the system
undergoes structural aging. In much of the literature, the
quantity ρ(θ ) exp(−1/θ )/τ0 is defined to be the α relaxation
rate τ−1

α . However, as pointed out in [14], this definition is
not the same as the conventional assumption that τα is directly
proportional to the viscosity.

In analogy to ρ(θ )/τ0, the quantity �(s,χ )/τ0 is the
contribution to the attempt frequency in Eq. (2.4) due to
mechanically generated noise. As in earlier papers [5,19,20],
we assume that �(s,χ )/τ0 is proportional to the rate of entropy
production. In steady flow, all of the work done on the system
is dissipated as heat; therefore, the rate of energy dissipation
per unit volume is 2γ̇ pls. To convert this rate to a noise strength
with dimensions of inverse time, we multiply by the volume
per noise source, i.e., the volume per STZ v0 exp(1/χ ), and
divide by an energy conveniently written in the form 2ε0s0v0.
The fact that the stress s0, introduced here for dimensional
reasons, turns out to be the low-temperature yield stress has
been one of the more interesting surprises in this theory. The
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resulting formula for the noise strength is

�(s,χ ) = qs

ε0s0
e1/χ . (2.5)

The GCE simulations involve only steady-state deforma-
tions; thus all of the information that we need is contained
in the stationary solutions of Eq. (2.1), obtained by setting
ṅ± = 0 and solving for the n±. The resulting expression for
the strain rate in Eq. (2.2) is

q = ε0�̃(s,χ )e−1/χ

[
2C(s)

2C(s) + �̃(s,χ )

]
T (s,χ ), (2.6)

where

C(s) = 1
2 [R(+s) + R(−s)] (2.7)

and

T (s,χ ) = R(+s) − R(−s)

R(+s) + R(−s)
. (2.8)

According to Eq. (2.8), T (s,χ ) is the bias between forward
and backward transitions. The second law of thermodynamics
(see [15]) requires that

T (s,χ ) = tanh

(
v0s

eZχ

)
. (2.9)

With Eq. (2.5), Eq. (2.6) becomes a quadratic equation that
can be solved for q or, more conveniently, for �(s,χ ). The
result is

�(s,χ ) = 1
2Q(s,χ ) + 1

2

√
Q(s,χ )2 + 4ρ(θ )Q(s,χ ), (2.10)

where

Q(s,χ ) = 2C(s)T (s,χ )
s

s0
− 2C(s) − ρ(θ ). (2.11)

Then, knowing �(s,χ ), we can use Eq. (2.5) to write

q = ε0s0

s
e−1/χ�(s,χ ). (2.12)

Note that �(s,χ ) is a non-negative, symmetric function of s

that vanishes like s2 at s = 0.
In the athermal limit where ρ = 0, both �(s,χ ) and q vanish

for s < sy (the jammed state), whereas for s > sy (the flowing
state)

q = 2ε0e
−1/χC(s)

[
T (s,χ ) − s0

s

]
. (2.13)

The yield stress sy is the solution of

syT (sy,χ ) = s0. (2.14)

Therefore, sy
∼= s0 when sy is large and T (sy,χ ) ∼= 1. For

small but nonzero ρ, according to Eq. (2.10), both �(s,χ ) and
q make smooth transitions near s = sy between viscous and
flowing states.

We also need to examine the viscous limit at small q, where
�(s,χ ) � ρ and χ ≈ θ . Keeping only the linear term in the

relation between q and s, we find

q = ε0ρ(θ )e−1/θ

(
2C(0)

2C(0) + ρ(θ )

)
v0s

eZθ
. (2.15)

The Newtonian linear viscosity for vanishingly small q and
expressed here in units of stress is ηN = s/q. Note that this
formula produces the conventional result in which ηN ∝ τα

multiplied by a slowly varying function of θ . It is this result
that, according to [14], substantially underestimates ηN at low
temperatures and therefore is responsible for the important
discrepancy between this theory and the GCE simulations.

The term C(s) is necessarily a symmetric function of s. We
write it in the form

C(s) = exp

[
−θE

θ
e−s2/2s2

E

] [
1 +

(
s

sB

)2 ]1/4

. (2.16)

On the right-hand side, the first factor in square brackets is
a thermally activated (Eyring-like) rate in which a barrier of
height θE is reduced quadratically by the applied stress via
a Gaussian factor, thus preserving the required symmetry. In
what follows, we find that we can approximate this term by
unity. The second factor is similar to, but not strictly the same
as, a Bagnold rate, proportional to the square root of the stress
at large s for dimensional reasons. It does seem to be significant
at low temperatures and high strain rates. The only quantity
that can play the role of sB in this formula is the pressure,
which may be roughly proportional to the temperature. Thus
we write sB = T/TB GPa, where the “Bagnold temperature”
TB is a constant.

III. EFFECTIVE-TEMPERATURE KINEMATICS

Turn now to the effective temperature χ . In general, χ is the
temperature of the configurational degrees of freedom of the
system, thus it characterizes the system’s state of structural
disorder. Its role here is primarily to determine the density
of STZs, as indicated by its appearance in the Boltzmann
factor in Eq. (2.3). We propose that χ is determined mostly
by kinematics rather than by specific details of the molecular
interactions and that this property of χ is largely responsible
for the universality observed at high strain rates.

At low temperatures, where changes in the state of glassy
configurational disorder can be induced only by externally
driven deformation and not by thermal fluctuations, i.e.,
where ρ = 0, there must be a direct relation between the
dimensionless strain rate q and the low-temperature effective
temperature, say, χ = χ̂ (q). When the strain rate is much
smaller than any relevant relaxation rate in the system, so
that q � 1, dimensional analysis based on the fact that there
is no intrinsic rate comparable to q/τ0 requires that χ̂ (q) be
equal to a constant, say, χ̂0.

In the opposite limit, when q is of the order of unity, we
assume that the relation between q and χ̂ has an Arrhenius
form q ∼ q0 exp(−A/χ̂ ). Both χ̂ and A are energies measured
in units of eZ . If eZ is the only energy scale in the system
relevant to configurational rearrangements, then we expect
that A is of the order of unity. Similarly, if τ−1

0 is the only
intrinsic rate, then q0 also should be of the order of unity; but
here there is an additional uncertainty about how accurately
we have estimated τ0. We return to these estimates in Sec. IV.
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The relation between strain rate and configurational disor-
der was discovered in numerical simulations by Haxton and
Liu [21]. It was discussed further in [22], where it was written
in the form of a glasslike relation between a “viscosity” q−1

and the temperature χ̂ ,

1

q
= 1

q0
exp

[
A

χ̂
+ αeff(χ̂)

]
, (3.1)

and in analogy to Vogel-Fulcher-Tamann (VFT),

αeff(χ̂) = χ̂1

χ̂ − χ̂0
exp

[
−b

χ̂ − χ̂0

χ̂A − χ̂0

]
. (3.2)

Thus χ̂ → χ̂0 in the limit of small strain rates and χ̂ → ∞ as
q → q0. The exponential cutoff in Eq. (3.2) is needed in order
that the VFT divergence at small χ̂ transforms smoothly to
the Arrhenius law at large χ̂ . Previous calculations have used
b = 3. Experience with these formulas, as in [22], leads us to
conclude that they are more cleanly reliable than their VFT
analog for viscosity as a function of ordinary temperature.
(In this connection, see the calculation of the viscosity
in [14].)

The equation of motion for χ itself is a statement of the
first law of thermodynamics; it describes entropy flow through
the slow, configurational degrees of freedom into the fast
thermal motions of the molecules. Near steady state it has the
form

χ̇ ∝ e−1/χ {�(s,χ )[χ̂(q) − χ ] + κρ(θ )(θ − χ )}. (3.3)

The first term in curly brackets on the right-hand side is the
rate at which χ is driven toward χ̂(q) by the mechanical noise
strength �(s,χ ). The second term, proportional to ρ(θ ), is the
rate at which thermal fluctuations drive χ toward the ambient
temperature θ . The quantity κ is a dimensionless parameter
of the order of unity. Since χ is a measure of configurational
disorder, we see here explicitly how ρ(θ ) controls the rate of
structural aging in undriven systems. The competition between
these two terms in Eq. (3.3) determines the value of χ : It is
close to χ̂ (q) for large �(s,χ ) and close to θ when the system
is driven slowly so that �(s,χ ) is small.

There is one complication that must be dealt with at this
point. Equation (3.3), as written, implies that the steady state
χ must lie in the interval between χ̂ (q) and θ . If we assume
that χ̂ (q) ≈ χ̂0 is a constant for small enough q, then a
system initially prepared with θ > χ̂0 would be “cooled”
to χ < θ when driven at a small strain rate. This behavior
seems implausible; so far as we know, it is not seen in other
simulations, e.g., [23], in which χ is measured directly. In [22],
this problem was corrected by setting χ̂0 = θ when θ exceeds
χ0 and by rescaling χ̂1 and χ̂A accordingly. Specifically,

χ̂0 =
{
χ0 for θ < χ0

θ for θ > χ0,
(3.4)

χ̂1 =
{
χ1 for θ < χ0

(χ̂0/χ0)χ1 for θ > χ0,
(3.5)

and

χ̂A =
{

χA for θ < χ0

(χ̂0/χ0)χA for θ > χ0.
(3.6)

In summary, we use Eq. (3.3) in the form

χ = �(s,χ )χ̂(q) + κρ(θ )θ

�(s,χ ) + κρ(θ )
, (3.7)

along with Eq. (3.1), to determine one relation between χ , q,
and s. We then use Eq. (2.12) to compute both q and χ as
functions of s.

IV. EVALUATION OF PARAMETERS AND COMPARISON
WITH THE GCE DATA

In Fig. 1, we show a selection from the raw data of GCE.
The data sets shown here are characteristic of the eleven such
sets that we have used in these analyses. They are stress
versus strain-rate curves for seven different temperatures T =
100, 300, 500, 700, 840, 940, and 1100 K, reading from top
to bottom. The data points are shown here along with our best-
fit theoretical curves. The GCE time constant is τ0 = 0.1 ps;
therefore, the dimensional strain rate is γ̇ pl = 1013q s−1. We
have arbitrarily chosen the upper limit of validity for the
STZ theory to be at q = 10−2, i.e., at γ̇ pl = 1011 s−1. Beyond
this point, the simulations show strain-rate softening, possibly
an indication that the system is liquifying and is no longer
consistent with the solidlike STZ model.

Our strategy for choosing parameters has been to look for
the simplest possible version of the theory that is consistent
with the data. Accordingly, our starting assumption is that the
Eyring-like rate factor is negligible; that is, we set θE = 0
in Eq. (2.16). We have tried various nonzero values of
θE and have found no overall improvement in the results.
At low temperatures, only large stresses (above the yield
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FIG. 1. (Color online) Stress s versus dimensionless plastic strain
rate q = τ0γ̇

pl. The top three solid black theoretical curves and the
associated open-square data points are for temperatures T = 100,
300, and 500 K. The middle dashed blue curves are for T = 700 K
(blue circles) and 840 K (blue triangles). The bottom two solid red
theoretical curves and open-circle data points are for T = 940 and
1100 K. Agreement between theory and simulation is good for the low
temperatures (black curves) at the top and for the high temperatures
(red curves) at the bottom, but it fails at small strain rates for the
intermediate temperatures near the glass transition.

011502-4



GLASS DYNAMICS AT HIGH STRAIN RATES PHYSICAL REVIEW E 86, 011502 (2012)

stress) come into play, reducing the activation barrier via the
Gaussian factor in Eq. (2.16). Conversely, at high tempera-
tures, the driving stresses may be small, but the activation
barriers are small compared to kBT . The exceptions are at the
intermediate temperatures, for small stresses and small strain
rates, where the theory breaks down for the more interesting
reasons mentioned in Sec. I. If we choose θE large enough
that, just by itself, it substantially increases the viscosity
and improves the fit, for example, at T = 840 K (the lower
dashed curve in Fig. 1), then we qualitatively ruin the fit at
T = 1100 K. Ultimately, the Eyring barrier must be important
at smaller strain rates and low temperatures; but we see no
need for it here.

The dimensionless constants ε0 in Eq. (2.2) and κ in
Eq. (3.3) should be of the order of unity. In the absence of better
information, we set ε0 = κ = 1. Similarly, we set eZ/v0 =
1 GPa and, in the next paragraph, use the high-temperature
viscosity to check that this estimate is reasonable.

At high temperatures and small stresses, with C(s) ≈ 1,
Eq. (2.15) tells us that the linear Newtonian viscosity is

ηN = [2 + ρ(θ )]
θe1/θ

2ρ(θ )
≈ 3

2
θe1/θ . (4.1)

The last approximation is valid for temperatures high enough
that ρ ∼ 1. At T = 1100 K (the bottom curve in Fig. 1), the
GCE result is ηN = 150. Then Eq. (4.1) implies that θ = 0.15
and therefore that TZ = eZ/kB ≈ 7000 K. This means that
v0/eZ ≈ 10v0, with v0 measured in cubic nanometers. Thus a
length scale of about half a nanometer gives us eZ/v0 ≈ 1 GPa,
as in the preceding paragraph.

Now consider low-temperature situations for which the
GCE data appear to indicate well defined yield stresses
s0(θ ), implying that ρ(θ ) = 0 to within the accuracy of the
measurements. The temperatures for which this is true are
T = 100, 300, 500, and 600 K. In this regime, T (s,χ ) ≈ 1;
thus, in the limit of small q, Eq. (2.13) becomes

q ≈ 2e−1/χ0

(
1 − s0

s

)
, (4.2)

which we have used to make a first estimate of χ0. We then have
found that we can fit all four of these data sets, for the whole
range of strain rates 10−5 < q < 10−2, by using the observed
values of s0(θ ) and by choosing χ0 = 0.1, χ1 = χA = 0.2, A =
1.3, q0 = 5, and b = 3 in Eqs. (3.1) and (3.2). We also have
chosen the Bagnold temperature defined following Eq. (2.16)
to be TB = 100 K. With this value of TB , the Bagnold term
is negligible for all but the lowest temperatures and largest
stresses; but it does seem to be relevant in that regime. We have
no reason to believe that this set of temperature-independent
parameters is unique or optimal.

The only remaining parameters to be chosen are the
quantities ρ(θ ) and s0(θ ) for temperatures near and above the
glass transition. Rather than trying to predict these quantities
theoretically, we have “measured” them by fitting the GCE
data. The results are shown below in Figs. 3 and 5 and are
discussed in Sec. V.

The theoretical fits to the data in Fig. 1 are accurate
for both the lower and higher temperatures, indicated by
solid black and red curves, respectively. However, there
are significant discrepancies at small strain rates for the
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FIG. 2. (Color online) Theoretical effective temperature χ as a
function the dimensionless strain rate q for temperatures T = 100–
600 K (bold black line), 840 K (dashed blue line), and 940 and 1100
K (thin red lines, from bottom to top).

intermediate temperatures T = 700 and 840 K, shown by
the dashed blue lines. (There is a similar discrepancy for
T = 800 K, not shown in the figure.) At T = 840 K, for
example, the theoretical stress starts to fall below the observed
values when q becomes less than about 10−4 and the system
switches over to linear viscosity at smaller strain rates.
The multispecies STZ theory proposed in [13,14] predicts
that the same thing will happen whenever ρ is nonzero, but
that the transition will occur at a smaller q and therefore at a
larger viscosity.

In Fig. 2 we show four examples of our theoretical χ ’s
as functions of strain rate. All four converge to the same
large-q behavior shown in Eq. (3.1). The bold black curve
is the low-temperature function χ = χ̂ (q), valid for all cases
in the range 100 < T < 600 K, where ρ = 0. It decreases
logarithmically at small q toward χ0 = 0.1. The two red
curves, for T = 940 and 1100 K, where ρ is large, fall quickly
to their corresponding values of χ = θ = T/TZ at small q. The
blue dashed curve is for T = 840 K, where ρ ∼= 0.1. This curve
falls substantially below the ρ = 0 curve before leveling off at
T/TZ = 0.12, again an indication that the small-q behavior is
incorrect. The theory predicts too small a viscosity in this case;
therefore, it predicts too small a value of �(s,χ ) relative to ρ in
Eq. (3.7) and thus predicts too fast an approach to the thermal
limit. Note that the largest values of χ shown in this figure are
still small enough that the STZ density ∼ exp(−1/χ ) remains
small.

V. DATA ANALYSIS

In principle, an ideal glass transition occurs in an undriven,
equilibrated, amorphous system at a Kauzmann temperature
T0, below which the viscosity is infinite and above which
the yield stress vanishes. The GCE scaling analysis implies
that something like this transition is occurring in this rapidly
deforming system.
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FIG. 3. (Color online) Thermal noise strength ρ (open red circles)
as a function of temperature T .

To begin to understand this situation, we show in Fig. 3
our “measured” values of the thermal noise strength ρ for
the eleven different temperatures included in the GCE data.
This function behaves more or less as expected, falling from a
value of the order of unity at large T to become unmeasurably
small below the glass transition. The most notable feature
of this curve is the smooth transition to zero in the region
600 < T < 840 K. For these temperatures we have optimized
the fits to be accurate at the higher strain rates, as shown
in Fig. 1 by the dashed curves for T = 700 and 840 K. The
single-species STZ theory should be valid at large q. Therefore,
these measurements of ρ must be taken seriously despite the
fact that they appear to be inconsistent with VFT formulas for
ρ of the kind developed in [17,18].

The glass transition emerges more clearly if, instead of
plotting ρ itself, we use the ρ-dependent formula for ηN in
Eq. (4.1) to plot the inverse Newtonian viscosity η−1

N as a
function of temperature. This is the function that GCE suggest
can be fit by

η−1
N (T ) =

{
const × (T − T0)α for T > T0

0 otherwise,
(5.1)

where T0 = 860 K and α = 1.23. Our result and the compari-
son with the GCE fit are shown in Fig. 4. Here, the fact that we
are underestimating the viscosities for temperatures less than
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FIG. 4. (Color online) Inverse Newtonian viscosity η−1
N (open red

circles) as a function of temperature T . Also shown (blue solid line)
is the GCE fit to this curve given in Eq. (5.1).
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FIG. 5. (Color online) Apparent yield stress from GCE data (open
red circles) and the GCE fit to this data (dashed black curve) given in
Eq. (5.2). The open blue triangles show the measured values of the
stress s0.

T0 does not make much difference because η−1
N is already very

small in that region.
According to the STZ theory, there is no yield stress in the

limit of zero strain rate when ρ is nonzero; the system must
have a finite linear viscosity at small enough stresses and strain
rates. Nevertheless, the theory predicts that, at very small ρ, the
system will appear to have a yield stress so long as the strain
rate is not too small. Therefore, we can plot this apparent yield
stress by plotting the observed stress at the smallest observed
strain rates, as a function of temperature. The GCE data for
q = 10−5 is shown in Fig. 5, along with the GCE fit to this
apparent yielding curve:

sapp
y =

{
const × (T0 − T )β for T < T0

0 otherwise,
(5.2)

where β = 0.6. The yield stress predicted by the STZ theory
would be given by the blue triangles in this figure for
temperatures up to about 600 K (for which ρ = 0) and then
would drop abruptly to zero above that point. It would be
interesting to see whether something closer to this behavior
would appear if the GCE data were extended to smaller strain
rates. We also show our measured values of the stress s0 in
Fig. 5. In accord with the preceding remarks, s0 coincides
with the yield stress at temperatures up to 600 K. At higher
temperatures, as found in [22], s0 levels off at about 0.55 GPa.
This simple behavior is determined by the large-q dependence
of the high-temperature curves in Fig. 1, where the onset of
nonlinearity is sensitive to s0.

The power-law approximations shown in Eqs. (5.1)
and (5.2) are similar to those used by Olssen and Teitel [1]
in their analysis of a zero-temperature, jamming-unjamming
transition controlled by the volume fraction of a model gran-
ular material. The GCE analog for the temperature-controlled
situation is

1

ηT

= 1

η(s)

∣∣∣∣ T

T0
− 1

∣∣∣∣
−α

, sT = s

∣∣∣∣ T

T0
− 1

∣∣∣∣
−β

, (5.3)

where η(s) = s/q (not the small-q Newtonian viscosity). A
graph of η−1

T as a function of sT produced the data collapse
shown in Fig. 2 of GCE (Ref. [2]). Our STZ version of that
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FIG. 6. (Color online) Scaled inverse viscosity η−1
T as a function

of the scaled stress sT , computed from the STZ theory using all
eleven GCE temperatures. The color scheme is analogous to that
used in Fig. 1. The four solid red curves that collapse approximately
to a single scaled inverse viscosity are for high temperatures in
the range 900–1100 K. The four solid black curves that collapse
approximately to a single scaled yield stress are for temperatures in
the range 100–600 K. The three dashed blue curves, which deviate
from the scaling pattern, are for temperatures 700,800, and 840 K,
reading from bottom to top.

figure is shown here in Fig. 6, where we have included the data
for all eleven of the GCE temperatures.

Note that the high-temperature (upper) branch in Fig. 6
has become nearly a single horizontal line at the constant
inverse viscosity η−1

T given in Eq. (5.3). These lines do not lie
exactly on top of each other in our graph because, as seen in
Figs. 4 and 5, the power-law fits in Eqs. (5.1) and (5.2) are
quantitatively inaccurate. The low-temperature (lower) branch
is not quite so clean because η−1

N is small but nonzero for
temperatures near T0, as shown in Fig. 4. The resulting failure
of the scaling analysis appears in the three dashed curves in
Fig. 6 for the temperatures T = 700, 800, and 840 K, where
the low-temperature behavior crosses over to an apparent linear
viscosity with decreasing strain rate. This effect would be even
more pronounced if, as predicted, the actual yield stress drops
to zero above 600 K. Apparently, the data collapse seen in GCE
does not indicate an exact scaling relation or the presence
of some diverging length scale. Nevertheless, it remains an
interesting qualitative feature of the data.

VI. CONCLUSION

The analysis presented here makes it appear that the STZ
theory of amorphous plasticity is realistic up to strain rates
of about 10−2/τ0, i.e., up to about 1% of the underlying
molecular relaxation rate. Both the GCE simulations and
our theoretical results exhibit an apparently simple scaling
behavior across three decades of strain rates below that limit.
Our STZ analysis implies, at least in a first approximation, that

effective-temperature thermodynamics, rather than material-
specific molecular interactions, control the system dynamics
at high strain rates.

As discussed in Sec. I, these STZ-based results are tech-
nically beyond the range of the mode-coupling theory [7–9]
because they extend down to temperatures well below the
glass transition where plastic flow is governed by nonpertur-
bative activation mechanisms. However, see [6] for a counter
argument. Similarly, we do not see how our results can be
reproduced in the framework of soft glassy rheology (SGR)
[24,25] because the STZ and SGR theories are so different
kinematically and because our present analysis is based so
strongly on effective-temperature dynamics. Again, however,
we point to [26], which describes progress in reformulating
SGR in a thermodynamic framework analogous to that of [15].
It will be interesting to see whether the results presented here
do in fact distinguish the STZ theory from either of these two
other competing points of view.

Our analysis in this paper is based on several fundamental
hypotheses that are potentially falsifiable and which require
further attention. First, in order to check the thermodynamic
hypothesis, we need to test our theoretical estimate of the
effective temperature χ by measuring it directly. Computa-
tional measurements of χ in [21] served as the basis for the
theory developed in [22], which led to the equations of motion
for χ presented here in Sec. III. Analogous measurements of
an effective temperature for a thermalized hard-sphere system
have been reported recently by Haxton [23]; and a STZ analysis
of Haxton’s results has revealed interesting insights [27]. So
far, we have not had a similar consistency check for our
analysis of the GCE data.

Second, our qualitative explanation of the discrepancies be-
tween the GCE data and single-species STZ theory is based on
the multispecies reinterpretation of glassy viscosity proposed
in [14]. We need now to develop this reinterpretation into
a quantitative theory and test whether that theory corrects the
discrepancies. This is our most unconventional effort. We have
used large-strain-rate data, instead of the conventional small-
strain-rate viscosity, to evaluate the thermal noise strength
ρ(θ ). This procedure produces unexpectedly large values of
ρ(θ ) at temperatures near T0, as seen in Fig. 3. The argument in
[14] tells us that, because of the statistically inevitable presence
of “slow” STZs, the viscosity increases more rapidly with
decreasing temperature than would be predicted simply by the
θ dependence of ρ. This argument, when applied to undriven
systems near their glass temperatures, accounts for Stokes-
Einstein violations and even for the stretched-exponential
nature of various relaxation functions. The question is whether
it also accounts quantitatively for what look like anomalously
large viscosities in the GCE data.

A third class of questions arises naturally within the context
of the first two. Our analysis indicates that the model of a
metallic glass used in the GCE simulations undergoes some
kind of glass transition at T0

∼= 860 K. As T decreases below
T0, the configurational noise strength ρ decreases smoothly
and becomes unmeasurably small below about 600 K. As this
happens, the system changes from a viscous, glass forming
liquid to a solidlike glass with an apparently well defined yield
stress. At nonzero, steady, shear rates, this transition becomes
smoother; the liquidlike behavior persists down to arbitrarily
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low temperatures with a continuous increase in the stress
level.

Finally, an obvious question from a first-principles point of
view is how the STZ transitions appear in the form of changes
in the underlying atomic structure. Reference [28], a sequel
to the GCE simulation [2], is a recent example of work along
these lines. It is shown there that, during steady-state flow, the
macroscopic Maxwell relaxation time η/G∞ (where G∞ is
the instantaneous shear modulus) is essentially the same as the
time required for a localized topological change to occur in

which an atom gains and/or loses one of its nearest neighbors.
We expect that further investigations of this kind will lead to a
clearer microscopic picture of the STZ transition mechanism.
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